
1. Introduction
The Southern Ocean is a fundamental regulator of global climate due to its ability to absorb, store, and transport 
heat. Through meridional overturning circulation and the formation of deep Antarctic Bottom Water, the South-
ern Ocean has absorbed an estimated 93% of the excess heat associated with anthropogenic warming (Rhein 
et al., 2013). It is estimated that by absorbing this excess heat, the Southern Ocean has reduced the rate of at-
mospheric warming and therefore the rate of global warming (e.g., Gregory, 2000). Though heat enters the deep 
ocean in both the North Atlantic and the Southern Ocean (Shi et al., 2018), results from the 5th Coupled Model 
Intercomparison Project (CMIP5; Taylor et al., 2012) show that the Southern Ocean is responsible for roughly 
70% of global ocean heat uptake (Frölicher et al., 2015; Sallé, 2018). In an equilibrium state, the Southern Ocean 
would gain heat from the atmosphere during the spring and summer and lose heat to the atmosphere during 
fall and winter, with no net gain of heat to the ocean. Since the climate is not at equilibrium, however, the heat 
content of the Southern Hemisphere's oceans has increased by approximately 10*1022 J from the 1950s to 2000s 
(Gille, 2008). An increase in ocean heat content may manifest itself as an increase in heat absorption or a decrease 
in heat loss. As a result, the Southern Ocean has warmed over the past 50 years, though not uniformly: the upper 
700 m have warmed by roughly 0.2°C per decade while regions of recently formed Antarctic Bottom Water have 
warmed by roughly 0.05°C per decade (Llovel & Terray, 2016; Purkey & Johnson, 2010; Rhein et al., 2013). 
Given the Southern Ocean's dominant role in global ocean heat uptake and mitigating warming from increased 
greenhouse gas emissions, understanding the interconnected mechanisms of Southern Ocean heat gain and loss 
is critical to reducing uncertainty in future climate projections.

Much research has focused on the oceanic mechanisms of heat uptake. Ocean heat gain and loss occur via differ-
ent processes depending on the location, though most processes are related to ocean convection, upwelling, and 
northward heat transport. Due to strong westerly winds and Ekman divergence in the Southern Ocean, large-scale 
upwelling brings cold water to the surface, which acts as a sink for atmospheric heat (Gregory, 2000; Morrison 
et al., 2015). The continuous upwelling in this region maintains cold sea surface temperatures, so the surface 
ocean can remain a sink for atmospheric heat as long as the surface ocean is colder than the lower atmosphere. 
Ocean circulation carries the absorbed heat away from the surface waters, which also maintains cold sea surface 
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temperatures (Armour et al., 2016; Morrison et al., 2016). Northward heat transport is controlled by passive ad-
vection and eddy processes (Morrison et al., 2016). Processes that weaken Southern Ocean convection can also 
reduce ocean heat gain. For example, sea ice retreat at the sea ice edge or within polynyas leads to weakening 
convection in the Southern Ocean by freshening the surface waters (Bitz et al., 2006), which reduces the draw-
down of heat from the atmosphere into the ocean (Newsom et al., 2016).

For roughly half the year the Southern Ocean releases heat into the atmosphere via some of the same processes 
by which it absorbs heat. For example, mixing in the upper ocean facilitates heat loss to the atmosphere in the fall 
and winter (Gille et al., 2016) by more efficiently delivering heat stored in the deep ocean to the surface. Winter-
time heat fluxes from the ocean to the atmosphere are often exacerbated by surface mixing caused by high winds 
and storms (Holte et al., 2012). Indeed, wind is one of the few ways that the oceanic and atmospheric mechanisms 
of Southern Ocean air-sea heat fluxes have been connected.

Few studies have focused on how the atmosphere itself can modulate Southern Ocean heat gain and loss. Winds 
play an important role by advecting cold and dry air from Antarctica over the ocean, reducing air temperature 
and humidity and driving turbulent heat fluxes from the ocean to the atmosphere (Doddridge et al., 2021; Ogle 
et al., 2018). By extension, the air-sea temperature and humidity gradients are also important in modulating heat 
gain and loss: the larger the gradient, the larger the heat flux. Another atmospheric property that modulates heat 
fluxes out of the ocean is static stability. Observations around the Southern Ocean indicate that the lower trop-
osphere is generally unstable (Bharti et al., 2019), which is common when sea surface temperatures are warmer 
than the air temperature. An unstable lower troposphere promotes convection at the ocean surface and enhances 
the flux of latent and sensible heat out of the ocean. The influence of other atmospheric properties on mecha-
nisms and magnitude of Southern Ocean air-sea fluxes are still unknown.

Clouds, in particular, may be an important factor in determining the magnitude and seasonality of anomalous 
Southern Ocean heat gain and loss. Why? First, the Southern Ocean is, on average, the cloudiest region in the 
world. Annual mean total cloud cover typically exceeds 80% (Huang et al., 2012; Naud et al., 2014; Warren 
et al., 1988), mostly with cloud tops below 5 km (Haynes et al., 2011), making them an important factor in the en-
ergy budget of the Southern Ocean. Seasonal mean cloud cover between 50° and 70°S is fairly consistent (Mace 
& Zhang, 2014), though observations are sparse during the winter due to satellites' difficulty observing clouds 
in the dark seasons. The Southern Ocean is consistently cloudy due to many environmental factors, including 
frequent storms, strong cyclonic winds around the Antarctic continent, and bioavailability of cloud condensation 
nuclei (e.g., Kelleher & Grise, 2019; McCoy et al., 2015). Observations report that low-topped clouds have an 
optical depth between approximately 2 and 9 (Haynes et al., 2011) and have a high occurrence of supercooled 
liquid water (Lawson & Gettelman, 2014; Mace et al., 2020). Given the persistent cloud cover of the Southern 
Ocean, it is reasonable to assume that clouds play a role in Southern Ocean heat uptake.

Second, clouds have a known radiative effect on the surface. Clouds cool the surface by reflecting shortwave 
radiation away and warm the surface by downward emission of longwave radiation. Low clouds and clouds con-
taining supercooled liquid water contribute the most to high latitude clouds' surface radiative effects (Shupe & 
Intrieri, 2004). Over the Southern Ocean, the mean net cloud radiative effect is negative, indicating that clouds 
generally cool the surface (Wang et al., 2020). Climate models have a known low bias in cloud liquid water path 
over the Southern Ocean (Bodas-Salcedo et al., 2014, 2016; Hyder et al., 2018; Vergara-Temprado et al., 2018), 
however, indicating that models may underestimate clouds' radiative effect on the Southern Ocean. Inaccurate 
representations of Southern Ocean clouds and their relationship with air-sea heat transport limits our ability to 
predict future climate change.

Third, climate model experiments have shown that interactions between clouds and the ocean can mitigate the 
pace of transient climate change and increase climate sensitivity through clouds' radiative feedbacks (Rose & Ray-
born, 2016; Trossman et al., 2016). Models from the Coupled Model Intercomparison Project Phase 6 (CMIP6; 
Eyring et al., 2016) often agree that between the first and last 20 years of the historical period (1994–2014 minus 
1850–1870), the peak in Southern Ocean heat uptake occurs near 60°S (Figure 1a). There is very little difference 
in total cloud cover between the beginning and end of the historical period (Figure 1b), but the peak in many 
models' ocean heat uptake often occurs near the same latitude as the peak in the Southern Hemisphere's vertically 
integrated cloud liquid water (Figure 1c). While the CMIP6 models do not always agree on the location or mag-
nitude of cloud liquid water path, the general agreement that the peaks in ocean heat uptake occur near the peaks 
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in cloud liquid water path motivates us to understand how interactions between cloud properties and the ocean 
enhance or mitigate the oceanic mechanisms of Southern Ocean heat uptake.

Finally, clouds have a known relationship with atmospheric stability, a factor that influences heat release from 
the ocean (see above). Increased atmospheric stability reduces atmospheric convection at the surface, which 
suppresses turbulent heat fluxes—and therefore heat loss—out of the ocean. In the mid-latitudes, a more stable 
atmosphere has been linked to increased cloud cover (Klein & Hartmann, 1993; Wood & Bretherton, 2006). 
Given the observed relationship between clouds and stability, and the known cloud radiative effect at the surface, 
clouds may influence surface turbulent heat fluxes as well as surface radiative heat fluxes.

Due to the Southern Ocean's challenging weather conditions, air-sea fluxes and clouds can be difficult to observe, 
especially during the winter. Observations from ship cruises and ocean buoys, while valuable, lack the necessary 
spatial and temporal coverage to study the relationship between clouds and ocean heat uptake. Satellite observa-
tions do achieve a more complete areal coverage of the Southern Ocean, but lack a long enough data record for 
robust statistics (>30 years), and can provide only a partial picture of the processes relevant to understanding the 
energy budget. Certain types of observations are especially problematic. The largest errors in Southern Ocean 
surface heat budget calculations come from uncertainty in air-sea fluxes (Dong et al., 2007), due to sparse in situ 

Figure 1. Difference in meridional mean (a) ocean heat uptake, (b) total cloud cover, and (c) vertically integrated atmospheric cloud liquid water in CMIP6 models' 
historical runs between 1994–2014 and 1850–1870 (Eyring et al., 2016).
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observations and difficulty in calibrating remote sensors (e.g., Bourassa et al., 2013; Josey et al., 1999; Swart 
et al., 2019). Southern Ocean studies that use air-sea fluxes, therefore, commonly rely on global atmospheric 
reanalyses (e.g., Liu et al., 2011), which is the method we employ here.

In this study, we attempt to understand the roles that atmospheric processes may play in mediating air-sea heat 
transport in the Southern Ocean. We examine the relationship between clouds and the mechanisms of Southern 
Ocean heat gain and loss in two reanalyses over the period 1979–2020. The paper is organized as follows: Sec-
tion 2 describes the reanalysis data sets and methods. Section 3 begins with an analysis of the spatial patterns, 
seasonality, and variability of Southern Ocean heat gain and loss from 1979 to 2020. We next assess the rela-
tionship between seasonal mean air-sea heat transport and atmospheric states like cloudiness and stability, and 
how changes in atmospheric states may affect surface radiative and turbulent fluxes. Section 3 concludes with 
an analysis of the environmental conditions contributing to the observed change in atmospheric states. Section 4 
discusses the physical reasoning behind the observed impact of clouds on Southern Ocean heat gain and loss, 
as well as our results' implications for the representation of Southern Ocean clouds in climate models. Section 5 
presents the summary and conclusions.

2. Data and Methods
2.1. ERA5 and JRA-55 Reanalysis Data

To identify the relationships between clouds and air-sea heat transport in the Southern Ocean, we use the ECM-
WF ERA5 (Hersbach et al., 2020) and the Japanese 55-year Reanalysis (JRA-55; Kobayashi et al., 2015) global 
atmospheric reanalysis data sets. Our choice of reanalyses was dependent on two criteria. First, the reanalyses 
needed to have all the fields for calculating ocean heat uptake and for analyzing atmospheric properties like cloud 
liquid water path. Second, the reanalyses needed to have physically reasonable representations of all relevant 
fields, especially surface fluxes, over at least the last 40 years. Both ERA5 and JRA-55 have all the relevant 
fields for this study in a continuous record since 1979, and have relatively small known biases in surface fluxes 
and clouds. Compared with available observations around the Southern Ocean, ERA5 slightly underestimates 
both cloud cover and the longwave radiative effect (Wang et al., 2020), while JRA-55 also underestimates cloud 
cover (Tsujino et al., 2018). Both reanalyses provide low cloud cover as well as total cloud cover. Low clouds in 
ERA5 are defined as clouds that occur on model levels with pressure more than 0.8 times the surface pressure 
(Hersbach et al., 2020), so over the Southern Ocean low clouds usually occur on levels with pressure greater than 
800 mb. Low clouds in JRA-55 are defined similarly, and occur on model levels with pressure greater than 850 
mb (Kobayashi et al., 2015).

We use monthly mean values from 1979 to 2020. ERA5 has a horizontal resolution of roughly 0.28° (approx-
imately 31 km) and 137 atmospheric levels from the surface to 0.01 hPa. ERA5 monthly means are calculated 
from hourly output. JRA-55 data are provided on a reduced Gaussian grid at a TL319 horizontal resolution 
(approximately 55 km) and 60 atmospheric levels from the surface to 0.1 hPa. JRA-55 monthly mean values are 
calculated from 3- or 6-hourly output. Both reanalyses use data that are assimilated from satellite, ship-based, and 
ocean buoy observations, using a 4D-Var assimilation scheme.

2.2. Assessing Relationships Between Southern Ocean Heat Uptake and Atmospheric States

Since the Southern Ocean has a strong seasonal cycle in heat gain and loss, we use a single term to refer to the 
transport of heat between the atmosphere and ocean: Southern Ocean heat uptake (SOHU). SOHU is negative if 
heat is escaping the ocean (i.e., the ocean is cooling), or positive if the ocean is absorbing heat (i.e., the ocean is 
warming). In our study, it is a measure of how much heat and energy are transported between the ocean and the 
atmosphere over a given time period. We adopt the convention that the sign of net surface radiative fluxes (the 
sum of shortwave, Fs, and longwave, FL, radiative fluxes) is positive into the surface, and the sign of turbulent 
heat fluxes (the sum of latent, FLA, and sensible, FSN, heat fluxes) is positive out of the surface. SOHU is defined 
as the difference between net radiative and turbulent fluxes at the surface at every ocean grid point (Equation 1). 
Since the direction of turbulent heat fluxes changes depending on whether heat is going in or coming out of the 
ocean, the turbulent heat fluxes are (by our convention) positive in the fall and winter and negative in the spring 
and summer. The data used in this study are monthly means, so SOHU is calculated and reported as a monthly 
mean as well.
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SOHU(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝐹𝐹s + 𝐹𝐹L − 𝐹𝐹LA − 𝐹𝐹SN (1)

For most of our analysis, we assess the relationship between atmospheric variables and the SOHU index, which 
is the annual or seasonal mean ocean heat uptake area averaged over all ocean grid cells between 45° and 65°S in 
every year. Where we report the relationship between atmospheric variables and total cloud cover index, the total 
cloud cover index is the seasonal mean total cloud cover averaged over all ocean grid cells between 45° and 65°S 
in every year. Both the SOHU and total cloud cover indices are detrended before further analysis.

Due to the established relationships between clouds and atmospheric stability (see Section 1), we also assess the 
relationship between ocean heat uptake and lower tropospheric stability. Atmospheric stability is defined here as 
the difference in potential temperature between 800 mb and the surface. This definition of atmospheric stability 
is based on Klein and Hartmann (1993) and adapted based on Naud et al. (2020) to more accurately capture the 
relationship between Southern Ocean clouds and atmospheric temperature.

For each variable we calculate seasonal anomalies by subtracting the long-term (1979–2020) seasonal climatol-
ogy from seasonal mean values in winter (June–July–August), spring (September–October–November), summer 
(December–January–February), and fall (March–April–May). To assess the relationship between SOHU and 
atmospheric variables, we use a linear regression method following the approach in Deser et al. (2017) as follows: 
for the relationship between seasonal atmospheric variables and SOHU, we find the linear fit of the seasonal at-
mospheric variable anomaly at every grid point, VS,y, to the seasonal SOHU index, US,y, where V is the atmospher-
ic variable of interest, U is the SOHU index, S represents a seasonal quantity, and y represents that the quantity 
specifies a particular year. Then our linear fit is:

𝑉𝑉𝑆𝑆𝑆𝑆𝑆(lat𝑆 lon) = 𝐴𝐴(lat𝑆 lon) + 𝐵𝐵(lat𝑆 lon) ∗ 𝑈𝑈𝑆𝑆𝑆𝑆𝑆 (2)

Upon solving for A and B, we show the spatial pattern of the atmospheric variable when the annual SOHU index 
is 2 SDs above the climatological mean. For the relationship between seasonal and annual mean SOHU, we use 
Equation 2 above, substituting the seasonal SOHU index for the annual SOHU index and the seasonal atmospher-
ic variable anomaly for the seasonal SOHU anomaly.

Finally, we calculate and report Pearson correlations to show the strength of the relationships. When the correla-
tion coefficient is reported for the entire Southern Ocean, it refers to the spatial correlation between two 2D fields 
for all ocean grid cells between 45° and 65°S, area-weighting to account for differences in grid cell area. When 
the coefficient is reported for different sectors, the coefficient still refers to a spatial correlation but only for a 
certain sector of the Southern Ocean between 45° and 65°S. While some correlation coefficients and significance 
are reported in the text for emphasis, correlations for the relationships described below, in all sectors and over the 
entire Southern Ocean, are reported in a Table S1 in Supporting Information S1

3. Results
3.1. Annual and Seasonal Mean Southern Ocean Heat Uptake, 1979–2020

We first present the annual mean SOHU from 1979 to 2020 in ERA5 and JRA-55 (Figure 2); a positive mean 
value indicates net heating of the upper ocean, while a negative mean value indicates a net cooling. Though the 
focus of this study is on seasonal relationships, we use the annual mean SOHU to confirm that ERA5 and JRA-55 
are spatially and quantitatively consistent. In Figures 2a and 2b, the Southern Ocean is separated into six sectors 
to more easily identify regions of interest. The sectors are as follows: (a) South Atlantic Ocean (SAO), (b) Afri-
can (AFR), (c) South Indian Ocean (SIO), (d) Australian (AUS), (e) South Pacific Ocean. (SPO), and (f) South 
American (SAM). The dotted line at 65°S represents the poleward boundary of defining our SOHU index. In the 
annual mean, ERA5 (Figure 2a) and JRA-55 (Figure 2b) have a very similar spatial pattern of ocean heat uptake. 
In every sector the Pearson correlation between ERA5 and JRA-55 is above 0.85, and across the entire Southern 
Ocean from 45° to 65°S the correlation is 0.90. In both reanalyses ocean heat uptake is most positive (i.e., the 
most net heating) in the South Atlantic Ocean, African, and South Indian Ocean sectors (sectors a-c), up to nearly 
110 W/m2. In both reanalyses ocean heat uptake is most negative (i.e., the most net cooling) in the South Pacific 
Ocean and South America sectors (sectors e, f)



Journal of Geophysical Research: Atmospheres

MORRISON ET AL.

10.1029/2021JD035487

6 of 22

Figure 2. Annual mean Southern Ocean heat uptake in (a) ERA5 and (b) JRA-55 from 1979 to 2020. Sectors are numbered and labeled for ease of identification in the 
text. The dotted line at 65°S represents the poleward boundary that defines the Southern Ocean heat uptake index. (c) Annual mean time series of the Southern Ocean 
heat uptake index in ERA5 (green) and JRA-55 (black) from 1979 to 2020. Here, the Southern Ocean heat uptake index is the annual mean ocean heat uptake averaged 
across 45°–65°S. Seasonal mean Southern Ocean heat uptake in (d) ERA5 and (e) JRA-55 from 1979 to 2020.
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Overall, in the annual mean the Southern Ocean absorbs more heat than it releases in both ERA5 and JRA-55. 
The annual mean SOHU index is positive in every year (Figure 2c), though the SOHU index in ERA5 is always 
larger than in JRA-55. There is no statistically significant trend in either reanalysis. The Pearson correlation 
between time series is 0.48 (p < 0.05), as the time series also do not show the same direction of change in every 
year—that is, in years when the SOHU index increases in ERA5, it does not necessarily increase in JRA-55. The 
positive annual mean Southern Ocean heat uptake masks a strong seasonal cycle of heat gain and loss. When the 
annual mean heat uptake is broken down into its seasonal components (Figures 2d and 2e), it is clear that in the 
seasonal mean the Southern Ocean gains heat in the spring and summer (positive SOHU), and loses heat to the 
atmosphere in the fall and winter (negative SOHU).

Given the strong seasonal cycle of heat gain and loss in the Southern Ocean (Figures 2d and 2e), we now consid-
er the heat budget of the Southern Ocean by examining spatial variations of SOHU as a function of season, by 
regressing the annual mean SOHU index (Figure 2c) against the year-by-year anomalies in the net surface flux 
by season about the appropriate 42-year seasonal mean. Figure 3 displays the seasonal SOHU anomaly during 
very strong SOHU years (𝐴𝐴 𝐴𝐴 ′

𝐴𝐴𝐴𝐴𝐴
= +2σ) compared to the seasonal climatological SOHU. That is, Figure 3 shows 

which seasons have the largest net surface heat flux anomalies when annual SOHU is anomalously strong. From 
Figures 2d and 2e we know that the Southern Ocean gains heat in the spring and summer and loses heat in the 
fall and winter. Therefore, a positive SOHU anomaly in the spring and summer (fall and winter) means that the 
Southern Ocean gains more (or loses less) heat in years of strong SOHU. In years when annual mean SOHU was 
higher than average, local seasonal mean anomalies are up to 32 Wm−2 higher or lower than its local seasonal 
average (Figures 3a and 3b). Both reanalyses suggest that seasonal mean SOHU anomalies are not homogenous 
around the Southern Ocean. In ERA5 (Figure 3a), the SOHU anomalies are positive in the African sector in every 
season; in the Australian sector the ocean gains more heat in the spring and summer but loses more heat in the fall 
and winter. In JRA-55 (Figure 3b), the South Pacific Ocean sector loses less heat in the winter (positive SOHU 
anomaly) but has almost no net change in the summer and fall.

When the seasonal mean heat uptake anomaly is averaged between 45° and 65°S, it is clear that all seasonal 
anomalies are positive. In ERA5 (Figure 3c), the largest spatially averaged seasonal mean heat uptake anomaly 
occurs in the spring. In JRA-55 (Figure 3d), the largest spatially averaged seasonal mean heat uptake anomaly 
occurs in the winter. In both reanalyses, the smallest SOHU anomalies occur in the summer, so anomalously high 
annual mean SOHU is not controlled by an increase in heat gain during summer. Importantly, in years when the 
annual mean SOHU is 2 SDs above the climatological mean, the Southern Ocean loses less heat in the fall and 
winter and gains more heat in the spring. While the contributions of seasonal mean SOHU in winter, spring, and 
fall are important to annual mean SOHU, we restrict our analysis only to winter and spring to conserve space in 
the text and focus on the seasons with the largest SOHU anomalies in both ERA5 and JRA-55.

3.2. Changes in Winter and Spring Clouds During Anomalously Strong Ocean Heat Uptake

A similar decomposition of other fields according to regression on strong SOHU years is revealing. We now as-
sess the relationship between seasonal SOHU and cloud cover by looking at the change in cloud structure anom-
alies (Figure 4). Between 45° and 60°S, zonal mean winter cloud cover increases by up to 2.4% below 900 mb 
(Figures 4a and 4b) during anomalously high winter SOHU in both ERA5 and JRA-55. However, ERA5 shows 
a slight increase in mid-level cloud cover (from 900 to 650 mb) while mid-level cloud cover decreases in JRA-
55. In both reanalyses, the largest increase in wintertime low-level cloud cover occurs between 50° and 60°S. 
During anomalously high winter SOHU, zonal mean specific humidity increases through the lower atmosphere 
(contours). The largest increase in specific humidity, approximately 6*10−4 g/kg, is around 55°S, corresponding 
to the largest increase in cloud cover.

As in winter, low-level cloud cover also increases during spring (Figures 4c and 4d), albeit by only approx-
imately 1.3%. The vertical structure of spring cloud cover anomalies differs between ERA5 and JRA-55. At 
higher (lower) latitudes, cloud cover increases (decreases) slightly through 650 mb in ERA5 (Figure 4c). Above 
approximately 900 mb, cloud cover decreases slightly in JRA-55 (Figure 4d). During anomalously high spring 
SOHU, zonal mean specific humidity increases throughout the lower atmosphere, but the largest increases occur 
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Figure 3. Regressions of seasonal mean Southern Ocean heat uptake on seasonal Southern Ocean heat uptake index for (a) ERA5 and (b) JRA-55. The dotted line at 
65°S represents the poleward boundary of the Southern Ocean heat uptake index. Ocean heat uptake anomalies are relative to the seasonal mean Southern Ocean heat 
uptake shown in Figure 2. Seasonal mean ocean heat uptake anomalies in (a) and (b) averaged over the Southern Ocean (45°–65°S) for (c) ERA5 and (d) JRA-55.
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at slightly higher latitudes than they do in the winter—between approximately 52° and 65°S. While the most 
positive specific humidity anomalies do occur around the same height as the most positive cloud cover anomalies, 
the greatest specific humidity anomalies are generally poleward of the low-level cloud cover maximum (compare 
the 6*10−4 g/kg specific humidity anomaly contour to the cloud cover anomaly in Figure 4c).

Since the largest changes in cloud cover occur near or below 900 mb (Figure 4), we next assess the relationship 
between low-level cloud cover and SOHU across the entire Southern Ocean during winter and spring (Figure 5). 
We find that regional low cloud cover increases by up to 7% compared to its respective winter and spring clima-
tological value. Wintertime cloud cover increases in every sector except for the Australian sector in ERA5 (Fig-
ure 5a). The relationship between low cloud cover and SOHU (contours) is also strongest in the Australian sector: 
the correlation of regressed cloud cover against regressed SOHU is 0.58. In the South Pacific Ocean sector, 
where low cloud cover anomalies are largest in ERA5, the correlation between clouds and SOHU is quite small 
(0.07 correlation) even though this is a region of large positive SOHU anomalies. While cloud cover increases 
across the entire South Pacific Ocean sector, there is a region of negative SOHU anomalies adjacent to the South 
American sector. The discrepancy between positive cloud and negative SOHU anomalies over this region likely 
leads to the very small correlation over the whole South Pacific Ocean sector. Wintertime low cloud cover in-
creases in every sector in JRA-55 (Figure 5b), with the largest positive cloud cover anomalies in the South Pacific 
Ocean sector. Here, positive cloud cover anomalies are also spatially correlated with the most positive winter 
SOHU anomalies (0.55 correlation). Over the entire Southern Ocean, the correlation between low cloud cover 
and SOHU anomalies is 0.36 (ERA5) and 0.31 (JRA-55). Positive cloud cover and SOHU anomalies do not pre-
cisely overlap, which is evidenced by the low overall correlation; we overlay the heat uptake anomalies to show 
that winter clouds and SOHU are related, but that clouds are not the most important atmospheric driver of SOHU.

The relationship between springtime low clouds and SOHU (Figures 5c and 5d) is less coherent than the winter-
time relationship. The spring cloud cover anomalies are smaller than in winter and are less uniform around the 

Figure 4. Regression of seasonal, zonal mean vertical cloud cover on seasonal Southern Ocean heat uptake index for (a) ERA5 winter, (b) JRA-55 winter, (c) ERA5 
spring, and (d) JRA-55 spring. Shading is the cloud cover regression. Contours are the regression of seasonal, zonal mean specific humidity on seasonal Southern 
Ocean heat uptake index (Figure 3).
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Southern Ocean. The mean cloud cover change by sector is negligible (within 0.5% of zero) everywhere except 
the South Pacific Ocean sector in ERA5 (Figure 5c) and in the South Pacific and South Atlantic Ocean sectors 
in JRA-55 (Figure 5d). Unlike in winter, in spring ERA5's cloud cover and SOHU anomalies are weakly anti-
correlated, with a correlation of −0.21 across the Southern Ocean. Springtime JRA-55 cloud cover anomalies 
are weakly linked to regions to positive SOHU anomalies (0.22 correlation). These weak springtime correlations 
suggest that clouds have a stronger relationship to winter SOHU than to spring SOHU.

When Southern Ocean heat uptake is high, clouds are not only more frequent but are also contain more liquid 
water. Figure 6 shows the regression of cloud liquid water path on seasonal mean SOHU index. Cloud liquid 
water path is normalized by the total cloud cover before performing any analysis, so positive anomalies in Fig-
ure 6 indicate an increase in cloud liquid water and not just an increase in cloud cover (Figure 5). In the winter, 
both ERA5 (Figure 6a) and JRA-55 (Figure 6b) show positive cloud liquid water path anomalies everywhere 
except the Australian sector, with the largest positive anomalies in the South Pacific Ocean and South American 
sectors. There is a 0.31 (0.42) correlation between cloud liquid water path and SOHU (black contours) across 
the entire Southern Ocean in ERA5 (JRA-55). Cloud liquid water path also increases during anomalously high 
spring SOHU (Figures 6c and 6d), though the spring anomalies are smaller and much more heterogeneous than 
the winter anomalies. In contrast with the winter, cloud liquid water path increases in the Australian sector in both 
reanalyses but decreases in the South Indian Ocean sector. Statistically the mean cloud liquid water path anomaly 
in the South Indian Ocean sector of ERA5 and JRA-55 is zero (<0.001 g/m3/%). In spring, there is no statistical 
relationship between cloud liquid water path and SOHU anomalies in ERA5, but a positive relationship in JRA-
55 (0.39 correlation) across the entire Southern Ocean.

Figure 5. Regression of seasonal mean low cloud cover on seasonal Southern Ocean heat uptake index for (a) ERA5 
winter, (b) JRA-55 winter, (c) ERA5 spring, and (d) JRA-55 spring. Shading is the cloud cover regression. Contours are the 
regression of seasonal mean Southern Ocean heat uptake on the annual mean Southern Ocean heat uptake index (Figure 3).
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3.3. Evaluation of Surface Fluxes During Strong Winter and Spring Ocean Heat Uptake

We have established that clouds appear to covary with SOHU in both winter and spring. Clouds could impact 
SOHU through radiative mechanisms, turbulent mechanisms, or both. We now investigate each of these possi-
bilities in turn.

First, Figure 7 shows the regression of seasonal net downward longwave flux (all-sky conditions minus clear-sky 
conditions) on the seasonal SOHU index. During anomalously high winter and spring SOHU, the net surface 
downward longwave flux increases by up to 5 W/m2. As we are showing the difference in net longwave flux 
between all-sky and clear-sky conditions, longwave flux anomalies are associated with clouds and atmospheric 
properties that co-vary with clouds. Because clouds do not change independently of other atmospheric proper-
ties, such as humidity and temperature, we attribute the observed longwave flux anomalies to both clouds and 
to changes in the atmospheric state that accompany cloud changes. In both reanalyses (Figures 7a and 7b), the 
most positive wintertime longwave flux anomalies are closely correlated with positive cloud cover anomalies 
(solid contours). There is a 0.94 (0.71) correlation between net surface downward longwave flux and low cloud 
cover anomalies across the entire Southern Ocean in ERA5 (JRA-55). In the South Pacific Ocean sector, which 
has the largest mean net surface downward longwave flux anomalies in both reanalyses, the correlation between 
longwave flux and low cloud cover is 0.98 in ERA5 and 0.83 in JRA-55.

In contrast with winter, the cloud cover and liquid water path anomalies are smaller during spring, so the cor-
responding net downward longwave flux anomalies are also smaller. During the spring (Figures  7c and  7d), 
longwave flux anomalies due to cloud changes are almost negligible in much of the Southern Ocean. In each 
sector the mean longwave flux anomaly is less than 1 W/m2. In both ERA5 and JRA-55, the largest increase in 
longwave flux is in the South Pacific Ocean sector. Even though their magnitude is not very large, longwave flux 
anomalies are still strongly correlated with cloud cover anomalies in ERA5 (0.82 correlation across the Southern 
Ocean), with the strongest positive relationship in the South Pacific Ocean sector (0.92 correlation). The rela-
tionship between longwave flux and clouds weakens slightly from the winter to the spring in JRA-55, with a 0.49 

Figure 6. As in Figure 5 except for cloud liquid water path. Shading is the cloud liquid water path regression. The cloud 
liquid water path is normalized by total cloud cover before performing any analysis. Contours are the regression of seasonal 
mean Southern Ocean heat uptake on the annual mean Southern Ocean heat uptake index (Figure 3).
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correlation between springtime longwave flux and cloud cover across the entire Southern Ocean due to very weak 
relationships in the South Atlantic Ocean and Australian sectors We conclude that in both winter and spring, 
clouds (and the atmospheric states that accompany clouds) do contribute to SOHU by increasing downwelling 
longwave radiation at the surface.

Now we assess the possibility that clouds may also affect SOHU by mediating total turbulent heat fluxes (com-
bined sensible and latent heat fluxes) out of the surface. During anomalously high winter and spring SOHU, 
turbulent heat flux anomalies are negative almost everywhere in the Southern Ocean compared to the winter and 
spring seasonal mean (Figure 8). Negative turbulent heat flux anomalies indicate that heat fluxes out of the ocean 
are reduced, so more heat remains in the ocean. During winter, turbulent heat fluxes are reduced by up to 25 W/
m2 in ERA5 (Figure 8a) and by up to 32 W/m2 in JRA-55 (Figure 8b). In ERA5 the largest reduction is in the 
South Atlantic Ocean sector; in JRA55 the largest reduction is in the South Pacific Ocean sector. However, the 
reduction in turbulent heat fluxes is not uniform around the continent. Turbulent heat fluxes from the ocean to the 
atmosphere strengthen in the lower latitudes of the Australian sector and between the South Pacific Ocean and 
South American sectors; the increase in turbulent heat fluxes out of the ocean is larger in ERA5 than in JRA-55. 
In the spring turbulent heat fluxes are reduced by up to 24 W/m2 in ERA5 (Figures 8c) and 20 W/m2 in JRA-55 
(Figure 8d). As in the winter, heat fluxes out of the ocean strengthen between the South Pacific Ocean and South 
American sectors in both reanalyses. The largest springtime reductions in turbulent heat fluxes occur between the 
South Pacific Ocean and Australian sectors.

Clouds do not appear to have a strong effect on total turbulent heat fluxes out of the ocean in either reanalysis in 
either season. While wintertime heat flux and cloud cover anomalies are anticorrelated across the entire Southern 
Ocean in ERA5 and JRA-55 (−0.31 and −0.16, respectively), the strongest relationship occurs in the Australian 
sector in ERA5. In the Australian sector, reduced cloud cover is linked to increased turbulent heat fluxes out of 
the ocean (−0.72 correlation). Reduced turbulent heat fluxes and positive cloud cover anomalies (solid contours) 
do often overlap in the spring, but regions of reduced heat flux and increased cloud cover are not statistically 

Figure 7. Regression of seasonal mean net downward longwave flux anomaly, all-sky minus clear-sky, on the seasonal 
Southern Ocean heat uptake index for (a) ERA5 winter, (b) JRA-55 winter, (c) ERA5 spring, and (d) JRA-55 spring. Shading 
is the longwave flux regression. Contours are the regression of seasonal low cloud cover on seasonal Southern Ocean heat 
uptake index (Figure 5).
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connected. Indeed, the correlation between heat flux and cloud cover anomalies is smaller than −0.05 in both 
reanalyses. Since the reduction of turbulent heat fluxes out of the ocean is so important for increasing SOHU, we 
next investigate other atmospheric processes besides clouds that may affect air-sea heat fluxes.

3.4. Atmospheric Conditions That Influence Cloud Cover and Fluxes

Although clouds do not directly mediate turbulent heat fluxes out of the ocean, the covariance between clouds 
and SOHU (Figures 4–6) leads us to investigate other connections between atmospheric conditions, clouds, and 
turbulent fluxes. The stability of the lower troposphere may connect clouds and turbulent fluxes. Therefore, we 
next present the relationship between atmospheric stability and SOHU.

During anomalously high SOHU, the lower atmosphere generally becomes more stable (Figure 9). In ERA5 
(Figure 9a) and JRA-55 (Figure 9b), wintertime stability increases by up to 1.5 K everywhere across the Southern 
Ocean except in parts of the Australian sector. In the lower latitudes of ERA5's Australian sector the atmosphere 
becomes slightly less stable, by roughly 0.8 K. Near the Antarctic coast in JRA-55, around 65°S, atmospheric 
stability decreases by nearly 1.4 K. The differences in atmospheric stability between ERA5 and JRA-55 poleward 
of 65°S are due to changes in surface temperatures over sea ice, which affect the calculation of stability. Positive 
wintertime stability anomalies are collocated with positive low cloud cover anomalies (solid contours; Figure 5). 
Across the entire Southern Ocean, the correlation between stability and low cloud cover anomalies is 0.67 (0.52) 
in ERA5 (JRA-55). Only in ERA5 are negative stability anomalies also collocated with negative low cloud cover 
anomalies (dashed contours; 0.76 correlation). There is a very weak correlation between negative stability and 
positive cloud cover anomalies in the Australian sector of JRA-55 (−0.15).

Atmospheric stability anomalies have much more spatial variability in spring compared to winter, with more 
regions of negative anomalies, once again demonstrating how springtime relationships generally appear weaker 
than wintertime relationships. The largest increases in stability occur in the higher latitudes of the South Atlantic 

Figure 8. Regression of seasonal mean net turbulent heat fluxes on the seasonal Southern Ocean heat uptake index for (a) 
ERA5 winter, (b) JRA-55 winter, (c) ERA5 spring, and (d) JRA-55 spring. The sign convention is that turbulent heat fluxes 
are positive out of the ocean. Shading is the turbulent heat flux regression. Contours are the regression of seasonal low cloud 
cover on the seasonal Southern Ocean heat uptake index (Figure 5).
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Ocean, the South Indian Ocean, and between the Australian and South Pacific Ocean sectors in ERA5 (Figure 9c) 
and JRA-55 (Figure 9d). In both reanalyses, stability decreases in the lower latitudes of the South Indian Ocean 
and Australian sectors. Stability also decreases near 65°S in the South Atlantic Ocean and Australian sectors 
in JRA-55, which is associated with a reduction in sea ice cover in these sectors (not shown). The relationship 
between atmospheric stability and low cloud cover, while strong in the winter, weakens in the spring: the corre-
lation between stability and cloud cover anomalies is less than 0.28 for both reanalyses across the entire Southern 
Ocean. By sector, a positive relationship exists in the Australian sector of ERA5 (0.57 correlation); a negative 
relationship exists in the South Atlantic Ocean sector of JRA-55 (−0.61 correlation), dominated by the overlap 
between negative stability and positive cloud cover anomalies near 65°S.

Atmospheric stability may increase either because sea surface temperatures decrease or because tropospheric 
temperatures increase. Positive SOHU anomalies are linked to an increase in both low cloud cover (Figures 4 
and 5) and atmospheric stability (Figure 9), so we expect to see a corresponding increase in atmospheric stability 
when we regress seasonal stability on the seasonal total cloud cover index. In other words, when cloud cover is 
anomalously high, we expect environmental conditions that correspond with an increase in atmospheric stability. 
Figure 10 shows the zonal mean temperature profile anomalies over ocean grid cells when total cloud cover be-
tween 45° and 65°S is anomalously high compared to the winter (Figures 10a and 10b) and spring (Figures 10c 
and 10d) seasonal mean. In both the winter and spring, atmospheric temperature increases more than surface tem-
perature, up to 0.6 K above the seasonal mean. In ERA5 the surface is cooler or the same temperature in both sea-
sons. In JRA-55 the surface does warm, though less than the atmosphere does, or remains the same temperature 
in both seasons. Overall, when total cloud cover is more than 2SDs above the 42-year seasonal mean, the upper 
atmosphere is warmer than the surface, which means that the atmosphere is also more stable. Notably, the winter 
and spring 800 mb temperature anomaly exceeds the surface temperature anomaly in both reanalyses, which is 
associated with increased atmospheric stability. The regression of zonal mean temperature profile anomalies 
on the SOHU index (not shown) provides the same results: when seasonal SOHU is anomalously strong, both 

Figure 9. Regression of seasonal mean near-surface static stability (Θ800 - Θsurface) on the seasonal Southern Ocean heat 
uptake index for (a) ERA5 winter, (b) JRA-55 winter, (c) ERA5 spring, and (d) JRA-55 spring. Shading is the stability 
regression. Contours are the regression of seasonal low cloud cover on the seasonal Southern Ocean heat uptake index 
(Figure 5).
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atmospheric and surface temperatures increase, but atmospheric temperatures increase faster, leading to greater 
static stability in the lower troposphere (between the surface and 800 mb).

3.5. Environmental Conditions During Anomalously High Winter and Spring Southern Ocean Heat 
Uptake

What mechanisms might explain the changes seen in clouds, atmospheric stability, and the atmospheric during 
anomalously high SOHU years and how do they impact heat uptake? The answer may be related to the synoptic 
conditions that exist when the ocean loses less heat in winter and gains more heat in spring. When the ocean loses 
less heat during winter, sea level pressure anomalies are in a wavenumber-3 pattern (Mo & White, 1985) in ERA5 
(Figures 11a) and JRA-55 (Figures 11b), with lower pressure in the Australian sector, higher pressure in the 
South Pacific Ocean sector, and lower pressure in the South American sector. Note that the latitude boundaries 
in Figure 11 maps are 30°–65°S. Climatologically there is a low pressure trough poleward of 60°S (not shown 
here; see Rafael, 2004), with sea level pressure increasing concentrically toward the equator. The decrease in sea 
level pressure in the Australian and South American sectors is associated with a deepening of the climatic low 
pressure. Importantly for our study, changes in sea level pressure are linked to warm air intrusions, and changes 
in stability, uplift and subsidence, which affect clouds (and radiative fluxes) and turbulent heat fluxes out of the 
surface. In ERA5 the strongest relationship between sea level pressure and turbulent heat fluxes occurs in the 
Australian sector (−0.73 correlation), where reduced sea level pressure (i.e., more uplift and convection at the 
surface) is associated with increased heat fluxes out of the ocean. The strongest relationship in JRA-55 is in the 
South Atlantic Ocean sector, where increased sea level pressure (again connected to subsidence and reduced con-
vection at the surface) is associated with suppressed heat fluxes (−0.62 correlation). Overall, wintertime sea level 
pressure anomalies are negatively correlated with turbulent heat flux anomalies (contours) everywhere except in 
the South Pacific Ocean sector in JRA-55, where they have a weak positive correlation of 0.15.

Figure 10. Regression of seasonal, zonal mean temperature on seasonal cloud cover index for (a) ERA5 winter, (b) JRA-55 winter, (c) ERA5 spring, and (d) JRA-55 
spring. The seasonal cloud cover index is the mean total cloud cover between 45° and 65°S in winter and spring.
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The sea level pressure anomaly pattern that occurs in winter still exists during spring (Figures 11c and 11d). The 
largest increase (decrease) in springtime sea level pressure occurs in the South Pacific Ocean (South America) 
sector in both ERA5 and JRA-55. As in the winter, sea level pressure and turbulent heat flux anomalies are nega-
tively correlated across the entire Southern Ocean—a −0.47 correlation in ERA5 and −0.55 correlation in JRA-
55. Regions of increased subsidence and uplift are associated with reduced and increased turbulent heat fluxes, 
respectively. In both reanalyses the strongest springtime relationship between sea level pressure and heat fluxes 
occurs in the South Pacific Ocean sector, where an increase in pressure is strongly correlated with a suppression 
of heat fluxes (−0.82 and −0.87 correlation in ERA5 and JRA-55, respectively).

Shifting spatial patterns of sea level pressure not only affect the transport of heat out of the ocean, but also the 
zonal transport of heat and water vapor, both of which affect atmospheric stability and cloud liquid water path. 
Figure 12 shows the regression of seasonal water vapor (green streamlines) and heat (purple streamlines) fluxes 
on the seasonal SOHU index. Arrows indicate the flux direction and the streamline thickness is proportional to 
the normalized seasonal flux magnitude. Flux direction and magnitude are calculated from and u- and v-com-
ponents of ERA5 and JRA-55 water vapor and heat fluxes. As in Figure 11, the latitude boundaries in Figure 12 
maps are 30°–65°S. In both the winter (Figures 12a and 12b) and spring (Figures 12c and 12d), the largest in-
creases in sea level pressure (Figure 11) cause anomalous anticyclonic motion that bring heat and water vapor 
into the eastern edge of the South Pacific Ocean sector from lower latitudes. The advection of heat and water va-
por into the South Pacific Ocean sector also corresponds with an increase in low cloud cover (shading; Figure 5), 
as well as an increase in cloud liquid water path (Figure 6) and atmospheric stability (Figure 9). In the winter, 
sea level pressure decreases in the Australian sector in both reanalyses (Figures  11a and 11b), which causes 
local anomalous cyclonic motion that advects colder and drier air off of Antarctica over the ocean (Figures 12a 
and 12b). Both water vapor and heat fluxes are very small here; the Australian sector also either shows reduced 
cloud cover (Figure 5a) or negligible cloud cover changes (Figure 5b).

Figure 11. Regression of seasonal mean sea level pressure on the seasonal Southern Ocean heat uptake index for (a) ERA5 
winter, (b) JRA-55 winter, (c) ERA5 spring, and (d) JRA-55 spring. Shading is the sea level pressure regression. Contours 
are the regression of seasonal turbulent heat fluxes on the seasonal Southern Ocean heat uptake index (Figure 8). The 
equatorward limit of Figure 11 is 30°S. The dotted lines at 45° and 65°S are the latitude limits of our defined Southern Ocean 
heat uptake index.
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The advected heat and water vapor flux anomalies are generally larger in the spring (Figures 12c and 12d) than 
in the winter. In both reanalyses the largest fluxes are in the Australian, South Pacific Ocean, and South Ameri-
can sectors. As in the winter, advection of colder drier air off Antarctica reduces cloud cover between the South 
Indian Ocean and Australian sectors, which also corresponds to regions of reduced stability in ERA5 and JRA-55 
(Figures 9c and 9d). As the atmosphere is already warmer in the spring than in winter, anomalous advection of 
heat and water vapor from lower latitudes likely has less impact on cloud cover in spring than in winter.

4. Discussion
One of the most important relationships shown in this study is the positive and significant (p < 0.05) relationship 
between winter cloud liquid water path and SOHU over the past 42 years, indicating that changes in clouds and 
their associated atmospheric states are linked to higher heat retention by the Southern Ocean during the coldest 
season. Increases in cloud liquid water path are more consequential for ocean heat uptake than just an increase in 
cloud cover. Why does the supercooled liquid water content of Southern Ocean clouds increase in the first place? 
The initial increase appears to be tied to large-scale synoptic processes that affect local environmental conditions. 
Southern Ocean clouds respond to changing environmental conditions (i.e., sea level pressure and water vapor/
heat flux advection), and in turn appear to maintain environmental conditions favorable to increased SOHU. They 
participate in, but probably do not initiate, the chain reaction of events and interactions that affect SOHU. Anom-
alies in sea level pressure and corresponding changes in water vapor and temperature advection are likely related 
to large-scale phenomena like the Southern Annular Mode (SAM; Limpasuvan & Hartmann, 1999), which has 
regional impacts on temperature and storm tracks around the Southern Ocean (e.g., Gillett et al., 2006), or the 
Southern Oscillation Index (SOI; Trenberth, 1984). However, we find no significant correlation between either 
of the winter/spring SAM and SOI values (calculated using 1981–2010 as the normalizing base period) and the 

Figure 12. Regression of seasonal mean heat (purple) and water vapor (green) fluxes, shown as streamlines, on the seasonal 
Southern Ocean heat uptake index for (a) ERA5 winter, (b) JRA-55 winter, (c) ERA5 spring, and (d) JRA-55 spring. 
Streamline thickness is proportional to the magnitude of the normalized seasonal flux regression. Shading is the regression of 
seasonal low cloud cover on the seasonal Southern Ocean heat uptake index (Figure 5). The equatorward limit of Figure 12 is 
30°S. The dotted lines at 45° and 65°S are the latitude limits of our defined Southern Ocean heat uptake index.
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winter/spring SOHU indices in ERA5 and JRA-55 (Figure 13; correlation coefficient within 0.21 of zero; see 
Table S1 in Supporting Information S1 for the seasonal correlation coefficients). A complete diagnosis of the 
phenomena responsible for changing environmental conditions during high SOHU is outside the scope of this 
paper but will be a focus for future work.

Figure 13. Time series of seasonal mean Southern Ocean heat uptake (45°–65°S; solid lines), Southern Annular Mode (SAM; dashed lines), and Southern Oscillation 
(SOI; dotted lines) indices from 1979 to 2020 for (a) winter and (b) spring in ERA5 and JRA-55. Note the scale differences for the winter and spring panels.
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In the meantime, many components of the interplay between clouds and ocean heat uptake are clear: warm air 
intrusions carrying heat and moisture toward the pole (e.g., Figure 12) provide a water vapor source for cloud 
formation, and can also change tropospheric stability, affecting cloud cover (e.g., Klein & Hartmann, 1993). 
Increased cloud cover, liquid water content, and water vapor will reduce surface longwave emission to space, 
but other factors are also important: the increased stability near the surface will directly suppress turbulent heat 
fluxes out of the ocean, and reduce heat loss to the atmosphere. These results show that ocean heat uptake is not 
a passive oceanic process, but that the atmosphere influences seasonal SOHU.

While many of the relationships described above are fairly robust during the winter, most relationships start to 
weaken during the spring. We believe there are three reasons for the weaker springtime relationships: (a) at-
mospheric energy transport into the Southern Ocean region is stronger during winter, (b) atmospheric states are 
more controlled by local processes during spring than during winter, and (c) springtime sea ice melt affects the 
Southern Ocean's ability to absorb heat from the atmosphere.

First, stronger poleward energy transport in the winter than during spring (Donohoe et al., 2013) affects seasonal 
mean air temperature and humidity. During the coldest season, heat and moisture advected over the Southern 
Ocean may have a larger effect on clouds than such advection during a warmer season. When the air-sea tem-
perature gradient is large, as in winter, bringing warmer air from lower latitudes will increase the static stability 
faster than when the air-sea temperature gradient is smaller (Figure 9). Since the Southern Ocean atmosphere is 
often unstable (Bharti et al., 2019), small increases in atmospheric stability can have large impacts on turbulent 
heat fluxes out of the ocean. In the winter, SOHU increases from a combination of increased longwave fluxes 
caused by changes in clouds, air temperature, and humidity, and reduced turbulent heat fluxes out of the ocean 
caused by increased atmospheric stability. In the spring, positive SOHU anomalies are mainly driven by reduced 
turbulent heat fluxes caused by increased atmospheric stability. Over the entire Southern Ocean, the magnitude of 
winter and spring turbulent heat flux anomalies are similar for both reanalyses in winter and spring. Correlations 
between heat flux and heat uptake are also similar and significant: larger than −0.6 in both seasons and both 
reanalyses (p < 0.05).

Second, if spring atmospheric states are not strongly influenced by advection from lower latitudes, then they are 
controlled by more local processes. One such process, which affects cloud formation, is the availability of ma-
rine aerosols for cloud condensation nuclei (McCoy et al., 2015). Another process, which is a third reason why 
winter and spring atmosphere-SOHU relationships are different, is melting sea ice. Clouds preferentially form 
over newly open water during the spring (Frey et al., 2018), so clouds may be changing in response to melting 
sea ice instead of heat and moisture advection. Furthermore, sea ice melt during spring may reduce the Southern 
Ocean's ability to absorb heat from the atmosphere. Melting sea ice freshens the surface ocean layer, reducing 
density and increasing the stability of the ocean column, thereby inhibiting processes that transport surface heat 
to the deep Southern Ocean (Bitz et al., 2006; Gille et al., 2016; Gregory, 2000; Morrison et al., 2015). When 
more heat stays in the surface ocean, less heat is absorbed from the atmosphere into the ocean. Therefore, years 
with anomalously high sea ice extent may have anomalously high heat absorption from the atmosphere, leading 
to positive SOHU anomalies.

Even though relationships between SOHU and atmospheric properties weaken in the spring, SOHU anomalies 
are still larger than summer or fall anomalies. Since air temperature is warmest during summer, warm and wet 
air from lower latitudes advected over the Southern Ocean has the smallest effect on cloud cover, cloud liquid 
water path, and atmospheric stability compared to winter and spring. The temperature gradient between higher 
and lower Southern latitudes becomes stronger in the fall, but not as strong as in the winter and spring, which 
may be why the fall ocean heat uptake anomaly is stronger than the summer but weaker than the spring anomaly. 
The surface mixing inhibition caused by sea ice melt is also a phenomenon that occurs in the spring, not the fall, 
which is another reason why spring and fall SOHU anomalies may be different.

Given the impact that clouds have on winter SOHU, do we expect the magnitude or timing of SOHU to increase 
in a warming world? Satellite observations and climate models suggest a positive decadal trend in cloud liquid 
water path over the Southern Ocean (Manaster et al., 2017). If the observed cloud-SOHU relationship is solely 
due to a large-scale motion whose interannual variability remains the same, then we expect the SOHU to remain 
fairly constant. If, as is more likely, the cloud-SOHU relationship depends both on large-scale climate phenomena 
and the trend in cloud liquid water path, then we expect SOHU to increase at the same rate as cloud liquid water 
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path. However, assessing future trends in cloud liquid water path are complicated by the fact that Southern Ocean 
clouds are not bright enough in the current generation of climate models.

The Southern Ocean is both poorly observed on a pan-regional, all-season scale and clouds are inadequately 
modeled, with known biases in supercooled liquid water amount (e.g., Bodas-Salcedo et al., 2014, 2016). Biases 
in cloud liquid water lead to biases in reflected shortwave and downwelling longwave radiation, both of which 
have significant implications for SOHU. As we have shown here, increased downwelling longwave radiation 
from cloud cover and liquid water is an important contributor to observed SOHU. If modeled clouds are not 
widespread enough, or do not contain enough supercooled liquid water, then SOHU is likely underestimated in 
climate models. Given the global importance of heat uptake and heat content around the Southern Ocean, an un-
derestimation of SOHU has further knock-on effects for models' global climate. The results from this work may 
provide an observational constraint for atmospheric impacts on the mechanisms of ocean heat uptake.

5. Summary and Conclusions
In this study, we present the influence of clouds and other atmospheric processes on the mechanisms of SOHU 
in the ERA5 and JRA-55 reanalyses. By regressing seasonal anomalies on the SOHU index, we evaluate atmos-
pheric states when SOHU is anomalously high compared to the 1979–2020 climatology and find:

•  On average across the Southern Ocean, during the winter (spring) the Southern Ocean loses heat to (gains heat 
from) the atmosphere, but years with anomalously high SOHU are dominated by a decrease in heat loss to the 
atmosphere during winter and an increase in heat gain from the atmosphere during spring. Anomalously high 
SOHU is not controlled by an increase in ocean heat gain during summer.

•  Increased cloud cover, liquid water path, and humidity cause stronger SOHU by increasing downwelling long-
wave radiation into the surface, but the effect is stronger in winter than in spring.

•  Increased cloud cover is associated with a more stable lower atmosphere because the 800 mb air temperature 
is warmer than the surface during times of anomalously large cloud cover.

•  Increased atmospheric stability suppresses turbulent heat fluxes out of the surface, keeping more heat in the 
ocean.

•  Large-scale synoptic shifts in winter and spring sea level pressure and water vapor/heat flux advection are 
likely responsible for initiating the environmental changes around the Southern Ocean that correspond to 
changing atmospheric conditions that lead to an increase in cloud cover, cloud liquid water path, and atmos-
pheric stability. These changes ultimately increase ocean heat uptake by reducing heat loss to the atmosphere 
(Figure 14).

While reanalyses are not true observations and results should be interpreted with some caution, these results 
provide a form of observational constraint on seasonal SOHU and the influence of clouds on SOHU from 1979 
to 2020.
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Figure 14. Schematic demonstrating how sea level pressure anomalies lead to atmospheric conditions that increase Southern Ocean heat uptake.
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