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Abstract A number of physically based hypotheses have been proposed to explain the surprising
expansion of Antarctic sea ice area (SIA) over the satellite era (1979 to 2015). Here, we use a fully coupled
state-of-the-art global climate model to show that internal variability alone can produce such multidecadal
periods of Antarctic SIA expansion even as atmospheric CO, increases at observed rates and the planet
warms. When our model is started from a relatively warm Southern Ocean state, Antarctic SIA sometimes
(in one of three ensemble members) expands over multidecadal time scales at a rate comparable to that
over the satellite era. SIA expansion occurs concurrently with rising atmospheric CO, and warming global
surface temperatures, and SIA trends by region and sector resemble those over the satellite era. Our results
suggest that internal variability over long time scales in the Southern Ocean region may suffice to explain
Antarctic SIA expansion over the satellite era.

1. Introduction

As rising atmospheric CO, warms the planet, polar sea ice is expected to retreat as global surface tempera-
tures increase. This expected outcome has been observed in the Arctic, where sea ice has declined rapidly
(in both area and volume) over the last 40 years (Stroeve et al., 2012). In the Antarctic, on the other hand,
sea ice area (SIA) has been expanding at the modest, but statistically significant, rate of 0.2 million km? per
decade over much of the observational era (Jones et al., 2016; Parkinson & Cavalieri, 2012; Simmonds, 2015).
This observed increase in Antarctic SIA—in defiance of expectations given the rise in radiative forcing from
increased atmospheric CO,—has triggered a flurry of research activity to identify a plausible mechanism
for such a paradoxical phenomenon.

Several hypotheses have been proposed to explain this paradox. Stratospheric ozone loss over the Antarc-
tic was initially posited to drive SIA expansion by strengthening of the surface westerlies over the Southern
Ocean (Turner et al., 2009); later modeling work, however, showed that stratospheric ozone loss causes
SIA decline, not expansion, by augmenting poleward heat convergence by upwelling and oceanic eddies
(Bitz & Polvani, 2012; Sigmond & Fyfe, 2010; Solomon et al., 2015). Others posited that increased freshwater
input over the Southern Ocean (caused by increased ice shelf melt, for example) could instigate SIA expan-
sion by stabilizing the water column (Bintanja et al., 2013); follow-up studies, however, demonstrated that
the amount of freshwater input required for such water column stabilization is at least an order of magni-
tude greater than that estimated to arise from hydrological cycle amplification and ice shelf melt over the
observational period (Pauling et al., 2016; Swart and Fyfe, 2013).

Because such mechanistic hypotheses do not appear viable, an appealing alternative is to attribute observed
Antarctic SIA expansion to internal variability in the Earth system. Long preindustrial control integrations of
many state-of-the-art global climate models (GCMs) contain multiple multidecadal time periods over which
Antarctic SIA expands at a rate comparable to that in the observations, suggesting that such observed SIA
expansion could arise through internal variability (Polvani & Smith, 2013). However, analyses of historical
(1850 to 2005) runs from Phase 5 of the Climate Model Intercomparison Project show that multidecadal
Antarctic SIA expansion occurs only rarely during the past few decades (Zunz et al., 2013) and even the few
model runs that simulate expanding SIA do not correctly reproduce the seasonal spatial patterns of sea ice
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trends found in the observations (Turner et al., 2015). Furthermore, one of the largest single model initial
condition historical ensembles, the 40-member Community Earth System Model (CESM1) Large Ensemble,
did not produce a single member with expanding Antarctic SIA over the observational period (Kay et al.,
2015; Rosenblum & Eisenman, 2017).

While initial condition ensembles might be expected to sample the full range of shorter time scale internal
variability in a GCM, variability over longer time scales may plausibly be undersampled, particularly in
models that display ocean-driven multidecadal fluctuations in the SH (see, e.g., Martin et al., 2013). Recently,
Zhang et al. (2019) proposed that such oceanic variability may provide a reasonable explanation for observed
Antarctic SIA expansion. They found that when subjected to historical forcings, the fate of Antarctic STA
over the observational period in their GCM depended sensitively on the initial state of the ocean from which
the run was initialized: Model runs that were initialized from ocean states with weak or average Southern
Ocean convection experienced Antarctic SIA decline (as would be expected with increasing radiative forcing
over the historical period), while model runs that were initialized from ocean states with strong Southern
Ocean convection experienced vigorous Antarctic SIA expansion. Seasonal and spatial trends in Antarctic
SIA from the latter runs resembled those seen in the observational era.

While the hypothesis of Zhang et al. (2019) is compelling, their GCM runs were initiated from extreme
Southern Ocean convective states, with overturning in the oceanic Deep Cell in the range of 3 to 20 Sv in
their ensemble members. Regardless of whether such variability in Southern Ocean convection is realistic,
indirect assessments of Antarctic SIA prior to the observational era hint at a decline in SIA over the earlier
part of the twentieth century (Fan et al., 2014), and possibly a minimum (de la Mare, 1997), suggesting that
SIA expansion over the observational era may have occurred as SIA rebounded from a climatologically low
state. The question then arises as to whether models with less extreme patterns of ocean variability (than
the one used by Zhang et al., 2019) are capable of producing Antarctic SIA expansion concurrent with rising
radiative forcing from increasing atmospheric CO, if they are simply started from a climate state in which
sea ice is low.

In this study, we provide one such example. We use the fully coupled CESM1, a state-of-the-art GCM, to
demonstrate that internal variability can drive Antarctic SIA expansion, even as atmospheric CO, rises and
global surface temperatures increase. In a three-member ensemble initiated from a warm Southern Ocean
state and subjected to rising atmospheric CO,, we find that Antarctic SIA expands over a multidecadal
time period in one out of three members. We show that internal variability in total Antarctic SIA, and over
individual sectors, is very substantial, notwithstanding identically rising radiative forcing in all three ensem-
ble members. Our results suggest that internal variability in the coupled atmosphere-ocean-ice system can
overwhelm the forced response to increasing atmospheric CO, at present-day rates. They provide further
evidence that internal variability is the most parsimonious explanation for Antarctic SIA expansion over the
observational period.

2. Methods

We employed the fully coupled CESM1 (Hurrell et al., 2013) with the CAMS5 atmosphere (Neale et al., 2012),
fully dynamic CICE4 sea ice (Hunke and Lipscomb, 2008), the POP2 ocean (Danabasoglu et al., 2012) with
parameterized subgrid ocean eddies (Gent and McWilliams, 1992), and CLM4 land (Oleson et al., 2010).
All model components were nominally at 1° spatial resolution and were configured identically to those
employed in the CESM1 Large Ensemble project (Kay et al., 2015).

Years 800 to 2000 of the CESM1 Large Ensemble Control run (hereafter LE Control; Kay et al., 2015, atmo-
spheric CO, was fixed at 284.7 ppm) was used to assess the range of internal variability characteristic of
the model preindustrial climate and to identify ocean states that preceded periods of prolonged Antarctic
SIA expansion. We used linear regression to identify 40-year periods when (annual mean) Antarctic SIA
expanded more rapidly than the rate estimated for the observational era (0.2 million km? per decade over
1979 to 2015).

To select the initial state for our CO,-ramping three-member ensemble (hereafter “CO2Ramp”), we identi-
fied a point in the CESM1 LE Control that most closely matched the following criteria: Antarctic SIA was
at a local minimum and at a near-global minimum (at least 1.5 standard deviations below its climatological
value), qualitatively similar to the inferred SIA minimum prior to the satellite era (Fan et al., 2014); from
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Figure 1. Internal variability over 1,200 years of the CESM1 Large Ensemble Control (LEControl): (a) annual mean
Antarctic SIA (10 km?); (b) annual mean Southern Ocean SST (from 45° S to 60° S; K); and (c) and annual global
mean surface temperature (GMST; K). Thin gray lines show the annual mean time series, with 2 standard deviations
above and below the mean indicated (dotted gray). Thick lines show the 10-year low-pass filtered time series (filtered
using a ten-year Lanczos filter with 11 weights; see Duchon, 1979), with five 40-year time periods over which Antarctic
SIA expands at a rate greater than that in observations (1979-2015) drawn in red. Highlighted blue areas indicate
30-year periods during which Antarctic SIA and Southern Ocean SSTs trends are in the same sense (i.e., increasing SIA
and decreasing SSTs), but trends in GMST are in the opposite sense (see text). The year from which CO2Ramp
ensemble members are branched, 1190, is indicated in all panels (green vertical line).

that point, Antarctic SIA expanded for 40 years at a rate greater than its expansion over the observational
era; and restart files were available at that point. The year 1190 closely satisfied all three criteria, and three
CO2Ramp ensemble members were branched from this initial state (with small perturbations to the atmo-
spheric initial state using the CAMS5 “pertlim” parameter) and run for 40 years. In each CO2Ramp member,
atmospheric CO, was increased by 0.6%/year, approximately equal to the linear rate of CO, increase over
Years 1985 to 2000 (Mauna Loa Observatory data, NOAA ESRL; Tans and Keeling, 2019).

We compared SIA evolution in our CO2Ramp runs to observations of Antarctic SIA from 1979 to 2018,
collected through passive microwave satellite retrieval and processed through NASA Team and bootstrap
algorithms (the merged GSFC NASA Team/Bootstrap monthly sea ice concentration dataset; Cavalieri et al.,
1996, updated yearly, accessed Jan 2019). Global mean surface temperature (GMST) over the same time
period was obtained from the NASA GISS Land-Ocean Temperature Index (LOTI; GISTEMP Team, 2016
Dataset accessed 2019-01-15; Hansen et al., 2010).

3. Antarctic Sea Ice Variability in the CESM1 LE Control

In the CESM1 LE Control, Antarctic SIA exhibits significant interannual fluctuations (Figure 1a, gray lines).
The standard deviation of the annual mean SIA is approximately 0.5 million km? (for a 2.0 million km? 2
standard deviation envelope; see dotted horizontal lines in Figure 1a). That such variability spans a range
of time scales is evident in the 10-year low-pass filtered time series (Figure 1a, thick lines), which reveals
several multidecadal to centennial time periods over which Antarctic SIA expands and contracts.

Over these 1,200 years of the CESM1 LE Control integration, we find five 40-year periods over which Antarc-
tic SIA expands at a (linear) rate that exceeds that in the observations (0.2 million km? per decade from
1979 to 2015), an average of one 40-year period every 240 years (Figure 1a, red segments). As Antarctic SIA
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Figure 2. Ocean temperature anomaly (colors; K) when Antarctic SIA is low in the CESM1 LE Control: (a) at Year 1189 (with the 27.2¢ isopycnal surface; thick
purple contour) and (b) regressed on the Antarctic SIA, shown at two standard deviations below the climatological mean (the correlations for the regression are
shown as green contours at r = [—0.6, —0.3, 0.3]). Annual mean temperatures (black contours) are shown in both panels. Sea ice extent (the mean latitude of
the 0.15 ice fraction contour) in DJF (dark blue) and JJA (cyan) is shown (a) at Year 1189 in the CESM1 LE Control and (b) regressed on SIA in the CESM1 LE
Control at two standard deviations below the climatological mean.

expands, Southern Ocean SSTs concurrently cool (cf. Figures 1a and 1b, red segments). The close relation-
ship between Southern Ocean SSTs and Antarctic SIA is evident in the strong correlation between their
filtered time series (r = —0.86).

Whereas Southern Ocean SSTs and Antarctic SIA evolve together, GMST only co-evolves with Antarctic SIA
some of the time (r = —0.57 for the filtered time series; Figure 1c). That Antarctic SIA and GMST need not
necessarily evolve together is evident in the two 30-year periods highlighted (Figure 1, light blue shading):
While Antarctic SIA is expanding and Southern Ocean SSTs are cooling during both periods, GMST is either
rising (first period ca. Year 1300), or holding steady (second period ca. Year 1550). The former is qualitatively
similar to the observations from 1979 to 2015, when Antarctic SIA expanded with cooling Southern Ocean
SSTs, but GMST rose steadily (Cavalieri et al., 1996, updated yearly; GISTEMP Team, 2016, Dataset accessed
2019-01-15).

The simplest explanation for multidecadal Antarctic sea ice variability in the CESM1 LE Control is ther-
mal coupling between the atmosphere, ocean mixed layer, and sea ice, similar to that described by Bitz
et al. (1996): Long time scales emerge in this coupled system as the sea ice and ocean mixed layer integrate
high-frequency atmospheric noise. Variability in the surface westerly winds, often referred to as the South-
ern Annular Mode, also drives decadal variability in Antarctic SIA in the CESM1 (Holland et al., 2017).
Variability in the ocean circulation can arise from (and amplify) low-frequency variability due to thermal
coupling butis not necessary to initiate it (see, e.g., Barsugli & Battisti, 1998). That variability in Antarctic STA
in the CESM1 can be understood to arise primarily from the thermal coupling in the atmosphere-ocean-ice
system, rather than variability in the ocean circulation, is further supported by the very weak interannual
variability in Southern Ocean deep convection in the CESM1 (Behrens et al., 2016).

Indeed, significant Southern Ocean temperature anomalies always accompany Antarctic SIA extrema. To
demonstrate this, we examine the Year 1189 in the CESM1 LE Control (Figure 1, green line), which pre-
cedes a multidecadal period of vigorous SIA expansion (a SIA increase of nearly 1 million km? from Years
1189 to 1228). In that year, Antarctic SIA is roughly 1.5 standard deviations (0.7 million km?) below its cli-
matological mean value, and Southern Ocean SSTs are 1.5 standard deviations (0.2 K) warmer. Warm ocean
temperature anomalies extend well below the surface, with the top 200 m of the Southern Ocean (up to
40° S) at least 0.15 K warmer than climatology (Figure 2a). Warm anomalies are greatest near 60° S, and
warming extends to 800-m depth into the ocean interior ~50° S as temperature anomalies are readily trans-
ported downwards by subgrid scale eddies along sloping isopycnals (Figure 2a; 27.2¢ isopycnal contour
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shown for reference, purple line). Cool anomalies are also evident at depths below these warm anomalies.
Inspection of the 20-year period prior to Year 1189, when Antarctic SIA was declining toward its Year 1189
minimum, shows that these warm upper ocean temperature anomalies, and the accompanying cool ocean
interior temperature anomalies, evolve concurrently with SIA: Warm surface anomalies appear and amplify
as sea ice retreats in the years preceding 1189, while cold surface anomalies (characterizing previous peri-
ods with extensive SIA) are transported into the ocean interior by the general circulation (see Figure S1 in
the supporting information).

When ocean temperatures are regressed on Antarctic SIA and are evaluated when SIA is 2 standard devi-
ations below its mean value, a very similar pattern of ocean temperature anomalies emerges to that found
at Year 1189 (Figure 2b): warm anomalies in the upper Southern Ocean and extending to depth =50° S
and cold anomalies in the interior below. The strongest correlations between Antarctic SIA and ocean
temperatures are found near the Southern Ocean surface (above 400 m, and poleward of 40° S), though sta-
tistically significant relationships extend below 2000-m depth at some latitudes (Figure 2b, green contours).
Neither salinity nor density have statistically significant relationships with Antarctic SIA (see Figures S2
and S3), further suggesting that Antarctic SIA variability in the CESM1 can be understood as arising pri-
marily through thermal coupling between the atmosphere, sea ice, and ocean mixed layer. This contrasts
with the model employed by Zhang et al. (2019), in which Antarctic SIA variability was generated in the
preindustrial climate by order-of-magnitude, multidecadal fluctuations in the strength of Southern Ocean
deep convection.

4. Antarctic SIA Expansion in the CESM1 CO2Ramp Ensemble

We now examine how Antarctic SIA evolves in the CO2Ramp ensemble, where the CESM1 is restarted
from the warm Southern Ocean state found at Year 1189 of the CESM1 LE Control and where atmospheric
CO, is increased monotonically at historical rates (see section 2 for details). As seen in Figure 3a, in the
first year, Antarctic SIA in all CO2Ramp Ensemble Members (CO2Ramp EM1, EM2, and EM3) is at least 1
standard deviation below CESM1 LE Control climatological values (three blue lines at green vertical line).
Antarctic SIA subsequently recovers rapidly in CO2Ramp EM1 and EM2, rising above its CESM1 LE Control
climatological value within 5 years (Figure 3a, dotted and dash-dotted blue lines). Following this initial rapid
recovery, Antarctic SIA first stabilizes and then slowly begins to decline in both CO2Ramp EM1 and EM2,
presumably in response to rising radiative forcing with CO, ramping.

In contrast to the rapid recovery of Antarctic SIA in CO2Ramp EM1 and EM2, SIA slowly expands for a
period of 27 years in CO2Ramp EM3, at a rate only slightly greater than that in the CESM1 LE Control
(0.25 million km? per decade in CO2Ramp EM3 vs. 0.21 million km? per decade in the CESM1 LE Control
from Years 1190 to 1229; Figure 3a, compare solid blue and gray lines; dashed blue and gray lines show
the respective best fit lines). The rate of Antarctic SIA expansion in CO2Ramp EM3 also exceeds the rate
of SIA expansion in the observations (from 1979 to 2015, when the trend was positive; Figure 3b), though
the trend in the observations lasts longer by about one decade (37 years in the observations vs. 27 years in
the CO2Ramp EM3). Concomitant with Antarctic SIA expansion in CO2Ramp EM3, GMST increases at a
rate of 0.15 K/decade, similar to the 0.17 K/decade rate of GMST increase in the observations (Figure 3c).
Table 1 summarizes these periods of Antarctic SIA expansion in the CESM1 LE Control, CO2Ramp EM3,
and observations. We are well aware that direct comparison between CO2Ramp EM3 and observations must
be done with caution, as the observed evolution of sea ice and temperature may be caused, in part, by other
natural and anthropogenic forcings that are not included in our CO2Ramp runs. Nonetheless, to the degree
that CO, is the largest driver of climate change, it is not inappropriate to compare our CORamp runs with
the observations.

Following this relatively long period of expansion, Antarctic SIA in CO2Ramp EM3 declines over the final
decade of the run to terminate 2 standard deviations below climatological SIA in the CESM1 LE Control
(Figures 3a and 3b). This decline is suggestive of the decline in Antarctic SIA in the most recent observational
period (2016 to 2018; Figure 3b), though the length of the satellite record is too short to determine whether
observed SIA has dropped below its preindustrial climatological mean as it has in CO2Ramp EM3. In both
CO2Ramp EM3 and recent observations, the rapid decline in Antarctic SIA might be attributable to rising
radiative forcing overwhelming internal variability or may represent further Antarctic SIA fluctuations with
internal variability. That Antarctic SIA has dipped more than 2 standard deviations below the climatological

SINGH ET AL.

14,766



~1
AGU

100 Geophysical Research Letters 10.1029/2019GL083758

ADVANCING EARTH
AND SPACE SCIENCE

13.0 a Best-Fit Line, CESM LE Control —— CESM LE Control
---- Best-Fit Line, CO2Ramp EM3 ~ «---e: CO2Ramp EM1

— —-— CO2Ramp EM2
NE 12.5 = CO2Ramp EM3
~
© -
o I
= 1204 ¢+ 5 oA YUY N AN
©
()
19
<115
o :
L
o \/ ’
) 11.0 R

10.5

125 b
€
~ 100
o
o
= 075
>
T 0.50
£
2 o025
g0
® 0.00
—
<
© -0.25
L
® _
© -0.50
V]
-0.75
0 5 10 15 20 25 40
Year (CESM Ensemble)
o “ o % o %
Q ol ) ) Q Q
> ~ ~ ~ D »
0.8 C
¥o6
>
©
I
Qo4
<
-
s
00.2
0.0
0 5 10 15 20 25 30 35 40

Year (CESM Ensemble)

Figure 3. Antarctic ice area and GMST evolution in the CO2Ramp ensemble members: (a) Antarctic ice area in all 3 CO2Ramp ensemble members (blue lines;
solid blue line is ensemble member 3, with best fit line over Years 0 to 26 shown in dashed blue) and in the CESM1 LE Control (gray; best fit line over Years 1190
to 1229 shown in dashed gray; vertical green line denotes the year from which all CO2Ramp ensemble members were branched); (b) Antarctic SIA anomaly in
CO2Ramp EM3 (blue; best fit line over years 0 to 26 in dashed blue) and in the observational record (red; best fit line over 1979 to 2015 in dashed red); (c) GMST
anomaly in CO2Ramp EM3 (blue; best fit line over Years 0 to 39 in dashed blue) and in observations (red; best fit line over Years 1979 to 2018 in dashed red).
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Table 1
Comparison of Multidecadal Periods of SIA Expansion in the CESM1 LE Control, CESM1 CO2Ramp Ensemble Member 3,
and the Observations (Years 1979 to 2015)

Rate of CO, Increase AA SIA Trend Period of SIA Increase GMST Trend
(%/year) (10° km?/decade) (years) (K/decade)

CESM1 LE Control

Yrs 1190 - 1229 None 0.25 40 —0.03
CESM1 CO2Ramp

Ensemble Member 3 0.6 0.29 27 0.15
Observations,

Yrs 1979 - 2015 0.6 0.20 37 0.17

Note. Rate of CO, increase, trend in Antarctic sea ice area (AA SIA), length of time during which SIA expanded, and
trend in global mean surface temperature (GMST).

mean in only two out of three CO2Ramp ensemble members (Figure 3a, between Years 35 and 40) suggests
that internal variability continues to play a large role in Antarctic sea ice variability in the CESM1 even after
atmospheric CO, has been rising for several decades.

Inspection of the spatial pattern of Antarctic sea ice trends in the three CO2Ramp ensemble members
(Figure 4) highlights how significantly internal variability impacts Antarctic SIA evolution, even with ris-
ing radiative forcing and increasing GMST. While each of the three CO2Ramp ensemble members is forced
identically with rising atmospheric CO,, each displays a very different spatial pattern of trends in Antarctic
SIA (over the first 27 years of the integration; Figures 4a-4c) with distinct seasonality (Figures 4e-4g, 4i-4k,
4m-4o, and 4q-4s). This internal variability in the CO2Ramp ensemble suggests that there are few robust
spatial patterns of SIA expansion or decline that characterize the Antarctic sea ice response to increased
radiative forcing over a timespan of a few decades and that differing trends in different sectors mostly arise
through internal variability in the CESM1.

Surprisingly, we find that the spatial pattern of annual mean SIA trends in the observations closely resembles
the spatial pattern in CO2Ramp EM3 (cf. Figures 4c and 4d). This is particularly evident in DJF (Figures
4g and 4h) and MAM (Figures 4k and 41), where SIA expands around much of the Antarctic continent but
declines in the Amundsen and Bellinghausen Seas in both the observations and CO2Ramp EM3. In JJA, SIA
expands more robustly about the Antarctic continent in CO2Ramp EM3 than in the observations, but both
exhibit a decline in SIA near the West Antarctic peninsula (Figures 40 and 4p). Because such regional trends
in SIA are not common to all three CO2Ramp ensemble members, though all experience the same radiative
forcing, these modeled trends must be due to internal variability. By extension, we deduce that observed
regional trends in Antarctic SIA need not be a robust forced response to rising atmospheric greenhouse gases
but may simply arise from internal variability in the coupled climate system.

5. Discussion

This study demonstrates that Antarctic SIA can expand concurrently with rising GMSTs and, most impor-
tantly, with increasing radiative forcing from atmospheric CO,. We have shown that internal variability,
particularly that associated with the ocean state, can play a key role in determining the transient evolution of
Antarctic SIA under these conditions: multidecadal Antarctic SIA expansion, similar to that over the obser-
vational period (1979 to 2015) occurred in one of three ensemble members when the CESM1 evolved from a
warm Southern Ocean state, notwithstanding coincident rising radiative forcing and warming GMSTs. This
result stands in contrast with the evolution of Antarctic SIA in the 40-member CESM1 Large Ensemble, in
which all members were started from the same (nearly climatological) ocean state and not a single mem-
ber experienced Antarctic SIA expansion over the observational period and beyond. Our results imply that
a GCM ensemble started from a single ocean initial state may undersample the model's internal variabil-
ity, as shown by Hawkins et al. (2015) with an intermediate complexity Earth system model. Furthermore,
our findings also imply that accurate ocean initialization is likely necessary for probabilistic prediction of
Antarctic SIA evolution over interannual to multidecadal time scales. Of course, the results we present here
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Figure 4. Regional trends in Antarctic SIA (% per decade) in the three CESM1 CO2Ramp ensemble members (Years 0 to 26) and in observations (1979 to 2015):
(a-d) in the annual mean, (e-h) December-January-February (DJF), (i-1) March-April-May (MAM), (m-p) June-July-August (JJA), and (q-t)
September-October-November (SON) for CO2Ramp ensemble member 1 (EM1; a, e, i, m, and q), CO2Ramp ensemble member 2 (EM2; b, f, j, n, and 1),
CO2Ramp ensemble member 3 (EM3; c, g, k, 0, and s), and observations (d, h, 1, p, and t). In all panels, the 15% sea ice fraction contour is indicated (black line).

are only suggestive, and further work with larger GCM ensembles, started from a variety of Southern Ocean
states, will be necessary to carefully quantify how oceanic variability impacts Antarctic sea ice evolution.

Our results further build upon those of Zhang et al. (2019), who also demonstrated that the ocean state deter-
mines the evolution of Antarctic SIA in a GCM. Our results, however, imply that more modest variations in
ocean state may produce Antarctic SIA expansion concomitant with rising atmospheric CO,, and extrema
in Southern Ocean convection are not necessary; indeed, warm Southern Ocean conditions were sufficient
to trigger subsequent Antarctic SIA expansion in our three-member ensemble. Furthermore, the seasonal
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spatial patterns of SIA trends noted by Zhang et al. (2019), found to be similar to SIA trends over the obser-
vational period, were associated with changes in Southern Ocean deep convection in their model intrinsic to
the preindustrial state as the strength of Southern Ocean deep convection fluctuated. In contrast, our results
suggest that these seasonal spatial patterns of SIA trends need not be intrinsic to the preindustrial climate
(see Figure S4) but can arise spontaneously in some ensemble members by mere chance.

Even in the face of a changing climate, characteristics of the Antarctic itself may render its climate state
more likely to be driven by internal variability than that of other regions. The Antarctic is characterized by
substantial internal variability (see, e.g., Mayewski et al., 2004), low climate sensitivity relative to the Arctic
(Singh et al., 2018), and delayed surface warming (Armour et al., 2016). Furthermore, radiative forcing from
greenhouse gases over the observational period has only increased gradually over the last several decades.
In combination, this confluence of low sensitivity, delayed surface warming, high internal variability, and
slowly ramping radiative forcing point to internal variability playing an outsized role in the transient climate
response over the Antarctic. Equivalently, the time of emergence of the climate change signal is expected
to be substantially longer over the Antarctic than over regions with higher sensitivity and less internal
variability (Hawkins and Sutton, 2012).

Overall, our work further supports the hypothesis that Antarctic SIA expansion over the observational period
(1979 to 2015) was largely driven by internal variability, and coincident processes like ice shelf melt and
stratospheric ozone depletion are not necessary to produce the observed trends. However, we must empha-
size that our experiments are not meant to explain, quantitatively, the observed trends in Antarctic sea ice
from 1979 to 2015, as these experiments were not conceived to be a realistic simulation of Antarctic cli-
mate over that time period. First, our experiments were evolved from a preindustrial climate state, not the
climate state of the late 1970s. Furthermore, our experiments were forced uniquely with increasing atmo-
spheric CO,, and they do not include the formation of the ozone hole, which has been shown to be an
important driver of Antarctic sea ice loss (Sigmond & Fyfe, 2010; Bitz & Polvani, 2012; Solomon et al., 2015).
As such, further and more realistic experiments will be necessary to determine whether these additional
factors significantly alter the findings we report here.

While transient Antarctic SIA expansion concurrent with rising atmospheric CO, and warming global tem-
peratures is consistent with internal variability in the coupled Earth system, our work also suggests that
Antarctic SIA will eventually decline in response to ramping radiative forcing. The recent abrupt decline
in Antarctic SIA (2016 to present) may have been triggered by internal variability (Stuecker et al., 2017;
Meehl et al., 2019) but may also signal that we have entered such a period of forced sea ice retreat. Be that
as it may, the potential impact of internal variability on future Antarctic sea ice evolution should still not be
underestimated.
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